Riemannian manifolds in noncommutative geometry
نویسندگان
چکیده
منابع مشابه
Riemannian manifolds in noncommutative geometry
We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spinc manifolds; and conversely, in the presence of a spinc structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincaré ...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملNoncommutative spectral geometry of Riemannian foliations
According to [9, 8], the initial datum of noncommutative differential geometry is a spectral triple (A,H, D) (see Section 3.1 for the definition), which provides a description of the corresponding geometrical space in terms of spectral data of geometrical operators on this space. The purpose of this paper is to construct spectral triples given by transversally elliptic operators with respect to...
متن کاملOn Noncommutative and semi-Riemannian Geometry
We introduce the notion of a semi-Riemannian spectral triple which generalizes the notion of spectral triple and allows for a treatment of semiRiemannian manifolds within a noncommutative setting. It turns out that the relevant spaces in noncommutative semi-Riemannian geometry are not Hilbert spaces any more but Krein spaces, and Dirac operators are Kreinselfadjoint. We show that the noncommuta...
متن کاملReconstruction of Manifolds in Noncommutative Geometry
We show that the algebra A of a commutative unital spectral triple (A,H,D) satisfying several additional conditions, slightly stronger than those proposed by Connes, is the algebra of smooth functions on a compact spin manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2012
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2012.03.004